New detection systems for an enhanced sensitivity in key stellar (n,γ) measurements Lerendegui-Marco, J. García Infantes, Francisco Porras Sánchez, José Ignacio Praena Rodríguez, Antonio Javier Torres Sánchez, Pablo Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant and massive stars. However, neutron capture measurements via the time-of-flight (TOF) technique on key s-process nuclei are often challenging. Difficulties arise from the limited mass (∼mg) available and the high sample-related background in the case of the unstable s-process branching points. Measurements on neutron magic nuclei, that act as s-process bottlenecks, are affected by low (n,γ) cross sections and a dominant neutron scattering background. Overcoming these experimental challenges requires the combination of facilities with high instantaneous flux, such as n_TOFEAR2, with detection systems with an enhanced detection sensitivity and high counting rate capabilities. This contribution reviews some of the latest detector developments in detection systems for (n,γ) measurements at n_TOF, such as i-TED, an innovative detection system which exploits the Compton imaging technique to reduce the dominant neutron scattering background and s-TED, a highly segmented total energy detector intended for high flux facilities. The discussion will be illustrated with results of the first measurement of key the s-process branching-point reaction 79Se(n,γ). 2023-06-30T08:02:16Z 2023-06-30T08:02:16Z 2023-03-22 conference output EPJ Web of Conferences 279, 13001 (2023) NPA-X 2022[https://doi.org/10.1051/epjconf/202327913001] https://hdl.handle.net/10481/82987 10.1051/epjconf/202327913001 eng info:eu-repo/grantAgreement/EC/H2020/681740 http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional Edp Sciences