Colon cancer therapy with calcium phosphate nanoparticles loading bioactive compounds from Euphorbia lathyris: In vitro and in vivo assay Mesas Hernández, Cristina Garcés Robles, Víctor Jesús Martínez Martínez, Rosario Ortiz Quesada, Raúl Doello González, Kevin Domínguez Vera, José Manuel Porres Foulquie, Jesús María López-Jurado Romero De La Cruz, María Melguizo Alonso, Consolación Delgado López, José Manuel Prados Salazar, José Carlos Calcium phosphate nanoparticles Euphorbia lathyris Colon cancer Esculetin Euphorbetin Amorphous calcium phosphate nanoparticles (ACP NPs) exhibit excellent biocompatibility and biodegradability properties. ACP NPs were functionalized with two coumarin compounds (esculetin and euphorbetin) extracted from Euphorbia lathyris seeds (BC-ACP NPs) showing high loading capacity (0.03% and 0.34% (w/w) for esculetin and euphorbetin, respectively) and adsorption efficiency (2.6% and 33.5%, respectively). BC-ACP NPs, no toxic to human blood cells, showed a more selective cytotoxicity against colorectal cancer (CRC) cells (T-84 cells) (IC50, 71.42 μg/ml) compared to non-tumor (CCD18) cells (IC50, 420.77 μg/ml). Both, the inhibition of carbonic anhydrase and autophagic cell death appeared to be involved in their action mechanism. Interestingly, in vivo treatment with BC-ACPs NPs using two different models of CRC induction showed a significant reduction in tumor volume (62%) and a significant decrease in the number and size of polyps. A poor development of tumor vasculature and invasion of normal tissue were also observed. Moreover, treatment increased the bacterial population of Akkermansia by restoring antioxidant systems in the colonic mucosa of mice. These results show a promising pathway to design innovative and more efficient therapies against CRC based on biomimetic calcium phosphate NPs loaded with natural products. 2022-10-28T10:51:25Z 2022-10-28T10:51:25Z 2022-09-23 journal article Cristina Mesas... [et al.]. Colon cancer therapy with calcium phosphate nanoparticles loading bioactive compounds from Euphorbia lathyris: In vitro and in vivo assay, Biomedicine & Pharmacotherapy, Volume 155, 2022, 113723, ISSN 0753-3322, [https://doi.org/10.1016/j.biopha.2022.113723] https://hdl.handle.net/10481/77614 10.1016/j.biopha.2022.113723 eng http://creativecommons.org/licenses/by-nc-nd/4.0/ open access Attribution-NonCommercial-NoDerivatives 4.0 Internacional Elsevier