Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space Kaya, Seher López Camino, Rafael Lorentz-Minkowski space Zero mean curvature Separable surface Consider the Lorentz-Minkowski 3-space L 3 with the metric d x 2 + d y 2 − d z 2 in canonical coordinates ( x , y , z ) . A surface in L 3 is said to be separable if it satisfies an equation of the form f ( x ) + g ( y ) + h ( z ) = 0 for some smooth functions f , g and h defined in open intervals of the real line. In this article we classify all zero mean curvature surfaces of separable type, providing a method of construction of examples. 2022-09-07T10:46:42Z 2022-09-07T10:46:42Z 2020-05-15 journal article Published version: Seher Kaya. Rafael López. "Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space." Tohoku Math. J. (2) 74 (2) 263 - 286, 2022. [https://doi.org/10.2748/tmj.20210120a] http://hdl.handle.net/10481/76571 eng http://creativecommons.org/licenses/by-nc-nd/4.0/ open access Attribution-NonCommercial-NoDerivatives 4.0 Internacional Tohoku Daigaku Suugaku Kyoshitsu