Broad-Spectrum Antimicrobial ZnMintPc Encapsulated in Magnetic-Nanocomposites with Graphene Oxide/MWCNTs Based on Bimodal Action of Photodynamic and Photothermal Effects Cuadrado, Coralia Fabiola Nardecchia, Stefania Antimicrobial nanomaterials Carbon nanotubes Graphene Magnetic nanoparticles Hydrogel Photodynamic therapy Photothermal therapy Nanocarrier National Polytechnic School through the PIIF-20-05 project. Research Office of the Pontificia Universidad Catolica del Ecuador project code QINV0324-IINV529010100. Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. The present work studied two magnetic nanocomposites based on graphene oxide (GO) and multiwall carbon nanotubes (MWCNTs). The synthesis of these magnetic nanocomposites consisted of three phases: first, the synthesis of iron magnetic nanoparticles (MNPs), second, the adsorption of the photosensitizer menthol-Zinc phthalocyanine (ZnMintPc) into MWCNTs and GO, and the third phase, encapsulation in poly (N-vinylcaprolactam-co-poly(ethylene glycol diacrylate)) poly (VCL-co-PEGDA) polymer VCL/PEGDA a biocompatible hydrogel, to obtain the magnetic nanocomposites VCL/PEGDA-MNPs-MWCNTs-ZnMintPc and VCL/PEGDA-MNPs-GO-ZnMintPc. In vitro studies were carried out using Escherichia coli and Staphylococcus aureus bacteria and the Candida albicans yeast based on the Photodynamic/Photothermal (PTT/PDT) effect. This research describes the nanocomposites' optical, morphological, magnetic, and photophysical characteristics and their application as antimicrobial agents. The antimicrobial effect of magnetics nanocomposites was evaluated based on the PDT/PTT effect. For this purpose, doses of 65 mW center dot cm(-2) with 630 nm light were used. The VCL/PEGDA-MNPs-GO-ZnMintPc nanocomposite eliminated E. coli and S. aureus colonies, while the VCL/PEGDA-MNPs-MWCNTs-ZnMintPc nanocomposite was able to kill the three types of microorganisms. Consequently, the latter is considered a broad-spectrum antimicrobial agent in PDT and PTT. 2022-06-15T07:44:16Z 2022-06-15T07:44:16Z 2022-03-26 info:eu-repo/semantics/article Cuadrado, C.F... [et al.]. Broad-SpectrumAntimicrobial ZnMintPc Encapsulated in Magnetic-Nanocomposites with Graphene Oxide/MWCNTs Based on Bimodal Action of Photodynamic and Photothermal Effects. Pharmaceutics 2022, 14, 705. [https://doi.org/10.3390/pharmaceutics14040705] http://hdl.handle.net/10481/75496 10.3390/pharmaceutics14040705 eng http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess AtribuciĆ³n 3.0 EspaƱa MDPI