The Forward Physics Facility: Sites, experiments, and physics potential Anchordoqui, Luis A. Carmona Bermúdez, Adrián LHC (Large Hadron Collider) Experiments New physics Long-lived particles Neutrinos interactions Acknowledgments We thank the participants of the FPF meetings and the Snowmass working groups for discussions that have contributed both directly and indirectly to this study. We gratefully acknowledge the invaluable support of the CERN Physics Beyond Colliders study group and the work of CERN technical teams related to civil engineering studies (SCE-DOD), safety discussions (HSE-OHS, HSE-RP, EP-DI-SO), integration (EN-ACE), and discussions on services (EN-CV, EN-EL, EN-AA) and simulations (SY-STI). L. A. Anchordoqui is supported by U.S. National Science Foundation (NSF) Grant PHY-2112527. A. Ariga is supported by JSPS, Japan KAKENHI Grant JP20K23373 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant 101002690). T. Ariga acknowledges support from JSPS, Japan KAKENHI Grant JP19H01909. B. Batell is supported by U.S. Department of Energy (DOE) Grant DE–SC0007914 and by PITT PACC, USA. The work of J. Bramante is supported by NSERC, Canada. F. G. Celiberto acknowledges support from the INFN/NINPHA project, USA and thanks the Università degli Studi di Pavia, Italy for the warm hospitality. G. Chachamis is supported by the Fundação para a Ciência e a Tecnologia (Portugal) under project CERN/FIS-PAR/0024/2019 and contract ‘‘Investigador auxiliar FCT - individual Call, Portugal CEECIND/03216/2017 and acknowledges funding from the European Union’s Horizon 2020 research and innovation programme (Grant 824093). P. B. Denton is supported by DOE, USA Grant DE-SC0012704. Y. Du was supported by National Science Foundation of China (NSFC) Grants 12022514 and 11875003. The work of J. L. Feng is supported in part by NSF, USA Grants PHY- 1915005 and PHY-2111427, Simons Investigator Award, USA #376204, Simons Foundation, USA Grant 623683, and Heising-Simons Foundation, USA Grants 2019-1179 and 2020-1840. The work of M. Fieg, T. B. Smith, and Y.-D. Tsai is supported in part by NSF Grant PHY-1915005. M. Fucilla, M. M. A. Mohammed, and A. Papa acknowledge support from the INFN/QFT@COLLIDERS, Italy project. The work of M. V. Garzelli was supported in part by the Bundesministerium für Bildung und Forschung (BMBF), Germany. V. P. Goncalves was partially financed by the Brazilian funding agencies CNPq, FAPERGS, and INCT-FNA (process number 464898/2014-5). M. Guzzi is supported in part by NSF, USA Grants PHY- 1820818 and PHY-2112025. J. C. Helo acknowledges support from ANID FONDECYT-Chile Grant 1201673 and from ANID Millennium Science Initiative Program ICN2019 044. K. Jodłowski is supported by the National Science Centre, Poland, Grant 2015/18/A/ST2/00748. Ahmed Ismail and R. Mammen Abraham are supported by DOE, USA Grant DE-SC0016013. Ameen Ismail is supported by NSERC, Canada (reference number 557763) and by NSF, USA Grant PHY-2014071. Y. S. Jeong is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT: Ministry of Science and ICT) (2021R1A2C1009296). The work of F. Kling is supported by DOE, USA Grant DE-AC02-76SF00515 and by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy – EXC 2121 Quantum Universe – 390833306. P. Nadolsky is supported by DOE, USA Grant DE-SC0010129. H. Otono acknowledges support from JSPS, Japan KAKENHI Grant JP20H01919. V. Pandey is supported by DOE, USA Grant DE-SC-0009824. M. H. Reno is supported in part by DOE, USA Grant DE-SC-0010113. The work of A. Ritz is supported by NSERC, Canada, Canada. The work of D. Sengupta is supported by NSF, USA Grant PHY-1915147. T. Sjöstrand is supported by Swedish Research Council Grant 2016-05996. D. Soldin acknowledges support from the NSF, USA Grant PHY-1913607. S. Trojanowski is supported by the grant ‘‘AstroCeNT: Particle Astrophysics Science and Technology Centre’’ carried out within the International Research Agendas programme of the Foundation for Polish Science financed by the European Union under the European Regional Development Fund, and by the Polish Ministry of Science and Higher Education through its scholarship for young and outstanding scientists (decision 1190/E-78/STYP/14/2019). K. Xie is supported by DOE, USA Grant DE-FG02-95ER40896, NSF, USA Grant PHY- 1820760, and in part by PITT PACC. Parts of this work have been supported by Fermi Research Alliance, LLC, USA under Contract DE-AC02-07CH11359 with the DOE. The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF and the experiments currently envisioned to realize the FPF's physics potential. We then review the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics. 2022-06-07T11:46:22Z 2022-06-07T11:46:22Z 2022 info:eu-repo/semantics/article L.A. Anchordoqui, A. Ariga, T. Ariga et al. The Forward Physics Facility: Sites, experiments, and physics potential. Physics Reports 968 (2022) 1–50 [https://doi.org/10.1016/j.physrep.2022.04.004] http://hdl.handle.net/10481/75310 10.1016/j.physrep.2022.04.004 eng info:eu-repo/grantAgreement/EC/H2020/101002690 info:eu-repo/grantAgreement/EC/H2020/JP19H01909 http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España Elsevier