The ATLAS inner detector trigger performance in pp collisions at 13TeV during LHC Run 2 Aad, G. Aguilar Saavedra, Juan Antonio Atlas Collaboration The authors thank CERN for the very successful operation of the LHC, as well as the support staff from the institutions without whom ATLAS could not be operated efficiently. The authors also gratefully acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRCKI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRSandMIZS, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSFNSF and GIF, Israel; Norwegian FinancialMechanism 2014-2021, Norway; NCNandNAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Goran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CCIN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NLT1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed elsewhere [67]. The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016–2018 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb−1, 46.9 fb−1, and 60.6 fb−1 respectively of proton–proton collision data at a centre-of-mass energy of 13TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and b-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interactionmultiplicities demonstrates howthe inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme. 2022-04-21T11:36:02Z 2022-04-21T11:36:02Z 2022-03-08 journal article Aad, G... [et al.]. The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2. Eur. Phys. J. C 82, 206 (2022). [https://doi.org/10.1140/epjc/s10052-021-09920-0] http://hdl.handle.net/10481/74441 10.1140/epjc/s10052-021-09920-0 eng http://creativecommons.org/licenses/by/3.0/es/ open access Atribución 3.0 España Springer