Vinyl sulfonyl chemistry-driven unidirectional transport of a macrocycle through a [2]rotaxane H. G David, Arthur García Cerezo, Pablo González Campaña, Araceli Santoyo González, Francisco Blanco Suárez, Víctor This work has been financially supported by FEDER(EDRF)/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades (P18-FR-2877), grant PID2020-112906GA-I00 funded by MCIN/AIE (/10.13039/501100011033) and Ministerio de Economia y Competitividad (MINECO, Spain) (CTQ2014-55474-C2-2-R and CTQ2017-86125P, co-financed by FEDER funds). Funding for open access APCs provided by Universidad de Granada through a Paid by Read & Publish agreement with RSC. By applying a combination of the coupling-and-decoupling (CAD) chemistry of the vinyl sulfonate group with the click thia-Michael addition to the vinyl sulfone group (MAVS) we performed the irreversible unidirectional transportation of the ring through the linear component in a [2]rotaxane by a chemically and pH-driven flashing energy ratchet mechanism. The design is based on a monostoppered thread precursor bearing a sulfonate stopper, a vinyl sulfone group on the unstoppered end and a dibenzylammonium unit as recognition site for the dibenzo-24-crown-8 macrocycle. First, the ring enters from the vinyl sulfone side and the rotaxane is capped through a thia-Michael addition reaction. Then, the cleavage of the sulfonate group of the opposite stopper using MgBr2 as chemical stimulus and subsequent addition of base (Et3N) promoted the controlled and directional release of the macrocycle into the bulk under mild conditions. The efficiency of the system allowed the in situ operation as demonstrated by NMR and HRMS techniques. 2022-02-23T07:32:22Z 2022-02-23T07:32:22Z 2021-11-26 info:eu-repo/semantics/article Org. Chem. Front., 2022, 9, 633 . [DOI: 10.1039/D1QO01491A] http://hdl.handle.net/10481/72943 10.1039/D1QO01491A eng http://creativecommons.org/licenses/by-nc/3.0/es/ info:eu-repo/semantics/openAccess Atribución-NoComercial 3.0 España Royal Society of Chemistry