Primitive idempotents in central simple algebras over Fq(t) with an application to coding theory Gómez Torrecillas, José Kutas, P. Lobillo Borrero, Francisco Javier Navarro Garulo, Gabriel Global function field Central simple algebra Hasse invariants Primitive idempotent Skew constacyclic convolutional code Research partially supported by grant PID2019-110525GB-I00 from Agencia Estatal de Investigacion (AEI) and from Fondo Europeo de Desarrollo Regional (FEDER). We consider the algorithmic problem of computing a primitive idempotent of a central simple algebra over the field of rational functions over a finite field. The algebra is given by a set of structure constants. The problem is reduced to the computation of a division algebra Brauer equivalent to the central simple algebra. This division algebra is constructed as a cyclic algebra, once the Hasse invariants have been computed. We give an application to skew constacyclic convolutional codes. 2021-11-11T08:14:45Z 2021-11-11T08:14:45Z 2021-10-05 journal article J. Gómez-Torrecillas... [et al.]. Primitive idempotents in central simple algebras over Fq(t) with an application to coding theory, Finite Fields and Their Applications, Volume 77, 2022, 101935, ISSN 1071-5797, [https://doi.org/10.1016/j.ffa.2021.101935] http://hdl.handle.net/10481/71426 10.1016/j.ffa.2021.101935 eng http://creativecommons.org/licenses/by-nc-nd/3.0/es/ open access Atribución-NoComercial-SinDerivadas 3.0 España Elsevier