A prescription of methodological guidelines for comparing bio-inspired optimization algorithms LaTorre, Antonio Molina Cabrera, Daniel Poyatos Amador, Javier Herrera Triguero, Francisco Bio-inspired optimization Benchmarking Parameter tuning Comparison methodologies Statistical analysis Recommendations review Guidelines This work was supported by grants from the Spanish Ministry of Science (TIN2016-8113-R, TIN2017-89517-P and TIN2017-83132-C2-2-R) and Universidad Politecnica de Madrid (PINV-18-XEOGHQ-19-4QTEBP) . Eneko Osaba and Javier Del Ser-would also like to thank the Basque Government for its funding support through the ELKARTEK and EMAITEK programs. Javier Del Ser-receives funding support from the Consolidated Research Group MATHMODE (IT1294-19) granted by the Department of Education of the Basque Government. Bio-inspired optimization (including Evolutionary Computation and Swarm Intelligence) is a growing research topic with many competitive bio-inspired algorithms being proposed every year. In such an active area, preparing a successful proposal of a new bio-inspired algorithm is not an easy task. Given the maturity of this research field, proposing a new optimization technique with innovative elements is no longer enough. Apart from the novelty, results reported by the authors should be proven to achieve a significant advance over previous outcomes from the state of the art. Unfortunately, not all new proposals deal with this requirement properly. Some of them fail to select appropriate benchmarks or reference algorithms to compare with. In other cases, the validation process carried out is not defined in a principled way (or is even not done at all). Consequently, the significance of the results presented in such studies cannot be guaranteed. In this work we review several recommendations in the literature and propose methodological guidelines to prepare a successful proposal, taking all these issues into account. We expect these guidelines to be useful not only for authors, but also for reviewers and editors along their assessment of new contributions to the field. 2021-10-29T06:35:59Z 2021-10-29T06:35:59Z 2021-08-20 journal article Antonio LaTorre... [et al.]. A prescription of methodological guidelines for comparing bio-inspired optimization algorithms, Swarm and Evolutionary Computation, Volume 67, 2021, 100973, ISSN 2210-6502, [https://doi.org/10.1016/j.swevo.2021.100973] http://hdl.handle.net/10481/71161 10.1016/j.swevo.2021.100973 eng http://creativecommons.org/licenses/by-nc-nd/3.0/es/ open access AtribuciĆ³n-NoComercial-SinDerivadas 3.0 EspaƱa Elsevier