Enhanced hydrogenation catalyst synthesized by Desulfovibrio desulfuricans exposed to a radio frequency magnetic field Macaskie, Lynne E. Gómez Bolívar, Jaime Merroun, Mohamed Larbi EPSRC (EP/I007806/1; EP/D05768X/1), BBSRC (BB/ C516128/1), NERC (NE/L014076/1), The Royal Society (Industrial Fellowship) and Spanish Government Sistema Nacional de Garantia Juvenil grant PEJ-2014-P-00391. This work was supported by EPSRC (grants No EP/ I007806/1 and EP/D05768X/1), BBSRC (grant No BB/ C516128/1), NERC (grant NE/L014076/1) and by a Royal Society Industrial Fellowship to LEM for secondment into C-Tech Innovation Ltd., who provided the bespoke apparatus used in this work. We acknowledge the invaluable contributions of the late Dr Ruth Wroe of C-Tech Innovation Ltd. into useful discussions and the kind permission of Drs S. Megit, C. Berry and A. Morby (University of Cardiff, UK) to show their unpublished work in Supplementary Information. This work was partially supported by the Spanish Government Sistema Nacional de Garantia Juvenil Grant PEJ-2014-P- 00391 (Promocion de Empleo Joven e Implantacion de la Garantia Juvenil 2014, MINECO) with a scholarship to JGB. We also thank the EM Centre at U. Granada for access to high-resolution electron microscopy (in Fig. S2 and S3). All authors declare no competing interests. Desulfovibrio desulfuricans reduces Pd(II) to Pd(0)-nanoparticles (Pd-NPs) which are catalytically active in 2-pentyne hydrogenation. To make Pd-NPs, resting cells are challenged with Pd(II) ions (uptake), followed by addition of electron donor to promote bioreduction of cell-bound Pd(II) to Pd(0) (bio-Pd). Application of radiofrequency (RF) radiation to prepared 5 wt% bio-Pd catalyst (60 W power, 60 min) increased the hydrogenation rate by 70% with no adverse impact on selectivity to cis-2-pentene. Such treatment of a 5 wt% Pd/carbon commercial catalyst did not affect the conversion rate but reduced the selectivity. Lower-dose RF radiation (2-8 W power, 20 min) was applied to the bacteria at various stages before and during synthesis of the bio-scaffolded Pd-NPs. The reaction rate (mu mol 2-pentyne converted s(-1)) was increased by similar to threefold by treatment during bacterial catalyst synthesis. Application of RF radiation (2 or 4 W power) to resting cells prior to Pd(II) exposure affected the catalyst made subsequently, increasing the reaction rate by 50% as compared to untreated cells, while nearly doubling selectivity for cis 2-pentene. The results are discussed with respect to published and related work which shows altered dispersion of the Pd-NPs made following or during RF exposure. 2021-09-01T08:06:22Z 2021-09-01T08:06:22Z 2021-07-03 info:eu-repo/semantics/article Microb. Biotechnol. (2021) 00( 00), 1– 18. [https://doi.org/10.1111/1751-7915.13878] http://hdl.handle.net/10481/70027 10.1111/1751-7915.13878 eng http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España Wiley-Blackwell Publishing