The double-peaked type Ic Supernova 2019cad: another SN 2005bf-like object Gutiérrez, C. P. Galbany González, Lluis Supernovae: general Supernovae: individual: SN 2019cad We thank the anonymous referee for the comments and suggestions that have helped to improve the paper. We are grateful to Peter Jonker who enabled the WHT observation of this target during his program W19AN003. We thank Peter Brown its contribution with data from the Neil Gehrels Swift Observatory. CPG and MS acknowledge support from EU/FP7-ERC grant No. [615929]. MO acknowledges support from UNRN PI2018 40B696 grant. GP acknowledges support by ANID – Millennium Science Initiative – ICN12_009. NER acknowledges support from MIUR, PRIN 2017 (grant 20179ZF5KS). MF is supported by a Royal Society - Science Foundation Ireland University Research Fellowship. MS is supported by generous grants from VILLUM FONDEN (13261, 28021) and by a project grant (8021-00170B) from the Independent Research Fund Denmark. LG was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839090. JB, DH, DAH, and CP were supported by NSF grant AST-1911225. TMB was funded by the CONICYT PFCHA / DOCTORADOBECAS CHILE/2017-72180113. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Based on observations made with the Nordic Optical Telescope, owned in collaboration by theUniversity of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. Observations from the NOT were obtained through the NUTS and NUTS2 collaboration which are supported in part by the Instrument Centre for Danish Astrophysics (IDA). The data presented here were obtained in part with ALFOSC, which is provided by the Instituto de Astrofisica de Andalucia (IAA) under a joint agreement with the University of Copenhagen and NOTSA. Based on observations made with the GTC telescope, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, under Director’s Discretionary Time. This work has made use of data from the Asteroid Terrestrialimpact Last Alert System (ATLAS) project. ATLAS is primarily funded to search for near earth asteroids through NASA grants NN12AR55G, 80NSSC18K0284, and 80NSSC18K1575; by products of the NEO search include images and catalogues from the survey area. The ATLAS science products have been made possible through the contributions of the University of Hawaii Institute for Astronomy, the Queen’s University Belfast, the Space Telescope Science Institute, and the South African Astronomical Observatory. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. This work makes use of data from the Las Cumbres Observatory network. We present the photometric and spectroscopic evolution of supernova (SN) 2019cad during the first similar to 100 d from explosion. Based on the light-curve morphology, we find that SN 2019cad resembles the double-peaked Type Ib/c SN 2005bf and the Type Ic PTF11mnb. Unlike those two objects, SN 2019cad also shows the initial peak in the redder bands. Inspection of the g-band light curve indicates the initial peak is reached in similar to 8 d, while the r-band peak occurred similar to 15 d post-explosion. A second and more prominent peak is reached in all bands at similar to 45 d past explosion, followed by a fast decline from similar to 60 d. During the first 30 d, the spectra of SN 2019cad show the typical features of a Type Ic SN, however, after 40 d, a blue continuum with prominent lines of Si II lambda 6355 and C II lambda 6580 is observed again. Comparing the bolometric light curve to hydrodynamical models, we find that SN 2019cad is consistent with a pre-SN mass of 11 M-circle dot, and an explosion energy of 3.5 x 10(51) erg. The light-curve morphology can be reproduced either by a double-peaked Ni-56 distribution with an external component of 0.041 M-circle dot, and an internal component of 0.3 M-circle dot or a double-peaked Ni-56 distribution plus magnetar model (P similar to 11 ms and B similar to 26 x 10(14) G). If SN 2019cad were to suffer from significant host reddening (which cannot be ruled out), the Ni-56 model would require extreme values, while the magnetar model would still be feasible. 2021-07-27T07:31:12Z 2021-07-27T07:31:12Z 2021-04-08 info:eu-repo/semantics/article Published version: Gutiérrez, C. P... [et al.] (2021). The double-peaked type Ic Supernova 2019cad: another SN 2005bf-like object. Monthly Notices of the Royal Astronomical Society. [https://doi.org/10.1093/mnras/stab1009] http://hdl.handle.net/10481/69922 10.1093/mnras/stab1009 eng info:eu-repo/grantAgreement/EC/FP7/615929 info:eu-repo/grantAgreement/EC/H2020/839090 http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 3.0 España Oxford University Press