Abnormalities of hydrogen sulfide and glutathione pathways in mitochondrial dysfunction Quinzii, Catarina M. López García, Luis Carlos Coenzyme Q Mitochondria Reactive oxygen species (ROS) Oxidative stress Glutathione This work was supported by NIH P01 HD080642 (CMQ), and Ministerio de Ciencia e inn (LCL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Background Mitochondrial disorders are genetic diseases for which therapy remains woefully inadequate. Therapy of these disorders is particularly challenging partially due to the heterogeneity and tissue-specificity of pathomechanisms involved in these disorders. Abnormalities in hydrogen sulfide (H2S) metabolism are emerging as novel mechanism in mitochondrial dysfunction. However, further studies are necessary to understand the effects, protective or detrimental, of these abnormalities, and their relevance, in mitochondrial diseases. Aim of Review: To review the recent evidences of derangement of the metabolism of H2S, at biosynthesis or oxidation levels, in mitochondrial dysfunction, focusing specifically on the alterations of H2S oxidation caused by primary Coenzyme Q (CoQ) deficiency. Key Scientific Concepts of Review: Mitochondria play a key role in the regulation of H2S and GSH metabolism pathways. However, further studies are needed to understand the consequences of abnormalities of H2S and GSH synthesis on the oxidation pathway, and vice versa; and on the levels of H2S and GSH, their tissue-specific detrimental effects, and their role the role in mitochondrial diseases. Beside the known H2S pathways, additional, tissue-specific, enzymatic systems, involved in H2S production and elimination, might exist. 2021-02-03T08:39:02Z 2021-02-03T08:39:02Z 2021-01 info:eu-repo/semantics/article C.M Quinzii, L.C Lopez. Abnormalities of hydrogen sulfide and glutathione pathways in mitochondrial dysfunction. Journal of Advanced Research 27 (2021) 79–84 [https://doi.org/10.1016/j.jare.2020.04.002] http://hdl.handle.net/10481/66251 10.1016/j.jare.2020.04.002 eng http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 3.0 España Elsevier