Compact Modeling of Multi-layered MoS2 FETs including Negative Capacitance Effect Nandan, Keshari Toral López, Alejandro Marin-Sanchez, Antonio García Ruiz, Francisco Javier González Marín, Enrique Abstract—In this paper, we present a channel thickness dependent analytical model for MoS2 symmetric double-gate FETs including negative capacitance (NC) effect. In the model development, first thickness dependent model of the baseline 2D FET is developed, and later NC effect is included in the model using the Landau-Khalatnikov (L-K) relation. To validate baseline model behavior, density functional theory (DFT) calculations are taken into account to obtain numerical data for the K and valley dependent effective masses and differences in the energy levels of N-layer (N = 1, 2, 3, 4, and 5) MoS2. The calculated layer dependent parameters using DFT theory are further used in a drift-diffusion simulator to obtain electric characteristics of the baseline 2D FET for model validation. The model shows excellent match for drain current and total gate capacitance of baseline FET and NCFET against the numerical simulation. Index Terms—Metal-oxide-semiconductor field-effect transistor (MOSFET), Compact modeling, molybdenum disulfide (MoS2), transition metal dichalcogenide (TMD), Double Gate (DG), Negative Capacitance FET (NCFET). 2020-12-21T11:49:41Z 2020-12-21T11:49:41Z 2020 info:eu-repo/semantics/article Nandan, K., Yadav, C., Rastogi, P., Toral-Lopez, A., Marin-Sanchez, A., Marin, E. G., ... & Chauhan, Y. S. (2020). Compact Modeling of Multi-Layered MoS 2 FETs Including Negative Capacitance Effect. IEEE Journal of the Electron Devices Society, 8, 1177-1183. [DOI 10.1109/JEDS.2020.3021031] http://hdl.handle.net/10481/65070 10.1109/JEDS.2020.3021031 eng http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España IEEE-INST Electrical Electronics Engineers INC