Temporal migration rates affect the genetic structure of populations in the biennial Erysimum mediohispanicum with reproductive asynchrony Muñoz-Pajares, Antonio Jesús Abdelaziz Mohamed, Mohamed Picó, Xavier Biennials Erysimum mediohispanicum Genetic diversity Genetic structure Nuclear microsatellites Simulation models Temporal migration rate Funding was provided by projects CGL2009-07487/BOS and CGL2016-77720-P (AEI/FEDER, UE) to F.X.P., by the Impact Fellow programme from the University of Stirling to M.A. and by the Portuguese Foundation for Science and Technology (SFRH/BPD/111015/2015) to A.J.M.-P. We are grateful to Armando Caballero, Juan Pedro Martínez Camacho, Mario Vallejo-Marin, Mohammed Bakkali, Robin S. Waples, Xavier Thibert-Plante and Antonio Castilla for their comments and discussions on a previous draft of the manuscript. Esperanza Manzano, Leticia Ayllón and Rocío Gómez assisted in the laboratory. The EVOFLOR discussion group stimulated the development of this study. We thank the Sierra Nevada National Park headquarters for the permits and the support during our samplings in the field. We thank Bioportal at the University of Oslo and Residencia de Estudiantes de la Universidad de Zaragoza in Jaca for logistic support. We also thank the staff of the laboratory of molecular ecology (LEM) of the EBD-CSIC for assistance. Migration is a process with important implications for the genetic structure of populations. However, there is an aspect of migration seldom investigated in plants: migration between temporally isolated groups of individuals within the same geographic population. The genetic implications of temporal migration can be particularly relevant for semelparous organisms, which are those that reproduce only once in a lifetime after a certain period of growth. In this case, reproductive asynchrony in individuals of the same population generates demes of individuals differing in their developmental stage (non-reproductive and reproductive). These demes are connected by temporal migrants, that is, individuals that become annually asynchronous with respect to the rest of individuals of their same deme. Here, we investigated the extent of temporal migration and its effects on temporal genetic structure in the biennial plant Erysimum mediohispanicum. To this end, we conducted two independent complementary approaches. First, we empirically estimated temporal migration rates and temporal genetic structure in four populations of E. mediohispanicum during three consecutive years using nuclear microsatellites markers. Second, we developed a demographic genetic simulation model to assess genetic structure for different migration scenarios differing in temporal migration rates and their occurrence probabilities. We hypothesized that genetic structure decreased with increasing temporal migration rates due to the homogenizing effect of migration. Empirical and modelling results were consistent and indicated a U-shape relationship between genetic structure and temporal migration rates. Overall, they indicated the existence of temporal genetic structure and that such genetic structure indeed decreased with increasing temporal migration rates. However, genetic structure increased again at high temporal migration rates. The results shed light into the effects of reproductive asynchrony on important population genetic parameters. Our study contributes to unravel the complexity of some processes that may account for genetic diversity and genetic structure of natural populations. 2020-11-13T09:53:32Z 2020-11-13T09:53:32Z 2020-07-25 info:eu-repo/semantics/article A Jesús Muñoz-Pajares, Mohamed Abdelaziz, F Xavier Picó, Temporal migration rates affect the genetic structure of populations in the biennial Erysimum mediohispanicum with reproductive asynchrony, AoB PLANTS, Volume 12, Issue 4, August 2020, plaa037, [https://doi.org/10.1093/aobpla/plaa037] http://hdl.handle.net/10481/64253 10.1093/aobpla/plaa037 eng http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España Oxford University Press