Within-individual phenotypic plasticity in flowers fosters pollination niche shift Gómez Reyes, José María Perfectti Álvarez, Francisco Armas, Cristina Narbona, Eduardo González Megías, Adela Navarro, Luis DeSoto, Lucía Torices, Rubén Authors thank Raquel Sánchez, Angel Caravante, Isabel Sánchez Almazo, Tatiana López Pérez, Samuel Cantarero, María José Jorquera and Germán Fernández for helping us during several phases of the study and Iván Rodríguez Arós for drawing the insect silhouettes. This research is supported by grants from the Spanish Ministry of Science, Innovation and Universities (CGL2015-71634-P, CGL2015-63827-P, CGL2017-86626-C2-1-P, CGL2017- 86626-C2-2-P, UNGR15-CE-3315, including EU FEDER funds), Junta de Andalucía (P18- FR-3641), Xunta de Galicia (CITACA), BBVA Foundation (PR17_ECO_0021), and a contract grant to C.A. from the former Spanish Ministry of Economy and Competitiveness (RYC-2012-12277). This is a contribution to the Research Unit Modeling Nature, funded by the Consejería de Economía, Conocimiento, Empresas y Universidad, and European Regional Development Fund (ERDF), reference SOMM17/6109/UGR. Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change. Floral phenotypes impact interactions between plants and pollinators. Here, the authors show that Moricandia arvensis displays discrete seasonal plasticity in floral phenotype, with large, lilac flowers attracting long-tongued bees in spring and small, rounded, white flowers attracting generalist pollinators in summer. 2020-09-11T11:32:38Z 2020-09-11T11:32:38Z 2020-08-11 journal article Gómez, J.M., Perfectti, F., Armas, C. et al. Within-individual phenotypic plasticity in flowers fosters pollination niche shift. Nat Commun 11, 4019 (2020). [https://doi.org/10.1038/s41467-020-17875-1] http://hdl.handle.net/10481/63393 10.1038/s41467-020-17875-1 eng http://creativecommons.org/licenses/by/3.0/es/ open access Atribución 3.0 España Springer Nature