Letter of intent for KM3NeT 2.0 Díaz García, Antonio Francisco Navas Concha, Sergio Neutrino astronomy Neutrino Physics Deep sea neutrino telescope, Neutrino mass hierarchy The authors would like to thank D Allard, A Esmaili, G Fogli, O Mena, K Murase, S Palomares Ruiz, E Parizot, S T Petcov, S Razzaque, D Semikoz, A Yu Smirnov, F L Villante, F Vissani and R Zukanovich Funchal for their support and valuable discussions and suggestions in preparing this Letter of Intent. The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the highenergy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a threedimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations. 2020-06-19T11:52:22Z 2020-06-19T11:52:22Z 2016 info:eu-repo/semantics/article Adrian-Martinez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., ... & Anton, G. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8). [doi:10.1088/0954-3899/43/8/084001] http://hdl.handle.net/10481/62568 10.1088/0954-3899/43/8/084001 eng eu-repo/grantAgreement/EC/FP7/212525 http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España IOP Publishing Ltd