In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector Aaboud, M. Aguilar Saavedra, Juan Antonio Atlas Collaboration The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb−1 of √ s = 13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transversemomentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (pT). The precision of the relative jet energy scale is 1–2% for 200 GeV < pT < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same pT range. 2020-01-16T09:01:00Z 2020-01-16T09:01:00Z 2019-02-13 info:eu-repo/semantics/article Aaboud, M., Aad, G., Abbott, B., Abdinov, O., Abeloos, B., Abhayasinghe, D. K., ... & Abreu, H. (2019). In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector. The European Physical Journal C, 79(2), 135. http://hdl.handle.net/10481/58794 10.1140/epjc/s10052-019-6632-8 eng http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España Springer Nature