Recommended Methods to Study Resistive Switching Devices Lanza, Mario Roldán Aranda, Juan Bautista Resistive switching Resistive random access memories Electronic synapse Nanofabrication Electrical characterization The Collaborative Innovation Center of Suzhou Nano Science & Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, and the Priority Academic Program Development of Jiangsu Higher Education Institutions are also acknowledged. Stanford co-authors acknowledge support from the Non-volatile Memory Technology Research Initiative (NMTRI). An Chen from IBM is acknowledged for revision of section 5. Alok Ranjan from Singapore University of Technology and Design is acknowledged for useful discussion on section 3.5. Resistive switching (RS) is an interesting property shown by some materials systems that, especially during the last decade, has gained a lot of interest for the fabrication of electronic devices, being electronic non-volatile memories those that have received most attention. The presence and quality of the RS phenomenon in a materials system can be studied using different prototype cells, performing different experiments, displaying different figures of merit, and developing different computational analyses. Therefore, the real usefulness and impact of the findings presented in each study for the RS technology will be also different. In this manuscript we describe the most recommendable methodologies for the fabrication, characterization and simulation of RS devices, as well as the proper methods to display the data obtained. The idea is to help the scientific community to evaluate the real usefulness and impact of an RS study for the development of RS technology. 2019-11-22T08:25:40Z 2019-11-22T08:25:40Z 2018 info:eu-repo/semantics/article M. Lanza, H.‐S. P. Wong, E. Pop, D. Ielmini, D. Strukov, B. C. Regan, L. Larcher, M. A. Villena, J. J. Yang, L. Goux, A. Belmonte, Y. Yang, F. M. Puglisi, J. Kang, B. Magyari‐Köpe, E. Yalon, A. Kenyon, M. Buckwell, A. Mehonic, A. Shluger, H. Li, T.‐H. Hou, B. Hudec, D. Akinwande, R. Ge, S. Ambrogio, J. B. Roldan, E. Miranda, J. Suñe, K. L. Pey, X. Wu, N. Raghavan, E. Wu, W. D. Lu, G. Navarro, W. Zhang, H. Wu, R. Li, A. Holleitner, U. Wurstbauer, M. C. Lemme, M. Liu, S. Long, Q. Liu, H. Lv, A. Padovani, P. Pavan, I. Valov, X. Jing, T. Han, K. Zhu, S. Chen, F. Hui, Y. Shi, Adv. Electron. Mater. 2018, 1800143 [http://dx.doi.org/10.1002/aelm.201800143] http://hdl.handle.net/10481/58016 10.1002/aelm.201800143 eng http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 3.0 España Wiley