Macroscopic Limits, Self-Organization and Stability in Systems with Singular Interactions Arising from Hydrodynamics and Life Sciences Poyato Sánchez, Jesús David Soler Vizcaino, Juan Segundo Universidad de Granada. Programa de Doctorado en Física y Matemáticas Macroscopic Limits Self-organization Mathematical models Hydrodynamics Life Sciences This dissertation is centered around the analysis of non-linear partial differential equations that arise from models in physics, mathematical biology, social sciences and neuroscience. Specifically, we address a particular family of models that have been coined in the literature with the name of “collective dynamics models”. The main idea is that from basic rules stating how a system of particles interact, the population often has the ability to self-organize collectively as a unique entity and it amounts to different emergent phenomena depending on the particular context., e.g., swarming, flocking, schooling, synchronization, etc. Although these models appear in completely different settings, what make them so special from a mathematical point of view is the fact that their structural resemblance allow us to tackle them with common abstract mathematical tools. Indeed many relevant improvements and mathematical methods have emerged from this interface as we tackle the different effects that we can encounter (e.g., kinetic theory, stochastic equations, mean field limits, propagation of chaos, hydrodynamic limits, potential theory, optimal transport, etc). 2019-10-21T08:16:12Z 2019-10-21T08:16:12Z 2019 2019-10-07 info:eu-repo/semantics/doctoralThesis Poyato Sánchez, Jesús David. Macroscopic Limits, Self-Organization and Stability in Systems with Singular Interactions Arising from Hydrodynamics and Life Sciences. Granada: Universidad de Granada, 2019. [http://hdl.handle.net/10481/57445] 9788413063324 http://hdl.handle.net/10481/57445 eng http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 3.0 España Universidad de Granada