Assessing bone quality through mechanical properties in postmenopausal trabecular bone. Toledano Pérez, Manuel Toledano Osorio, Manuel Guerado, Enrique Caso, Enrique Osorio Ruiz, María Estrella Osorio Ruiz, Raquel Trabecular bone static dynamic mechanic menopause Background: The inner structure of trabecular bone is a result of structural optimisation provided by remodeling processes. Changes in hormonal status related to menopause cause bone tissue loss and micro-architectural deterioration with a consequent susceptibility to fracture. Accumulation of micro-damage in bone, as a function of the rate of production and rate of repair, underlies the development of stress fractures, increasing fragility associated to age and osteoporosis, especially in transmenopausal women. Patients and Methods: Quasi-static and nano-dynamic mechanical characterisation were undertaken in trabecular bone from femoral neck biopsies of postmenopausal women. AFM complementary studies were performed to determine nano-roughness (SRa) and the fibrils width of collagen. Nanoindentations were used to quantify transmenopausal changes in intrinsic mechanical properties of trabecular bone: hardness (Hi), modulus of Young (Ei), complex modulus (E*), tan delta (δ), storage modulus (E') and loss modulus (E"). Results: As result of the quasi-static measurements, 0.149 (0.036) GPa and 2.95 (0.73) GPa of Hi and Ei were obtained, respectively. As result of the nano-dynamic measurements, 17.94 (3.15), 0.62 (0.10), 13.79 (3.21 and 6.39 (1.28) GPa of E*, tan (δ), E' and E" were achieved, respectively. 101.07 SRa and 831.28 nm of fibrils width were additionally obtained. Conclusion: This study poses a first approach to the measurement of bone quality in postmenopausal trabecular bone by combining quasistatic, nano-DMA analysis and tribology of dentin surface through AFM characterization 2018-09-25T11:31:00Z 2018-09-25T11:31:00Z 2018 info:eu-repo/semantics/article Toledano M, Toledano-Osorio M, Guerado E, Caso E, Osorio E, Osorio R. Assessing bone quality through mechanical properties in postmenopausal trabecular bone. Injury. 2018 Sep;49 Suppl 2:S3-S10. doi: 10.1016/j.injury.2018.07.035. http://hdl.handle.net/10481/52909 10.1016/j.injury.2018.07.035. eng http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess Atribución-NoComercial-SinDerivadas 3.0 España