Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation Luque Sola, Niceto Rafael Garrido Alcázar, Jesús Alberto Carrillo Sánchez, Richard Rafael D'Angelo, Egidio Ros Vidal, Eduardo Cerebellar nuclei Inferior olive Long-term synaptic plasticity Learning consolidation Modeling The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for limited aspects of learning. Recently, the role of additional forms of plasticity in the granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered. In particular, learning at DCN synapses allows for generalization, but convergence to a stable state requires hundreds of repetitions. In this paper we have explored the putative role of the IO-DCN connection by endowing it with adaptable weights and exploring its implications in a closed-loop robotic manipulation task. Our results show that IO-DCN plasticity accelerates convergence of learning by up to two orders of magnitude without conflicting with the generalization properties conferred by DCN plasticity. Thus, this model suggests that multiple distributed learning mechanisms provide a key for explaining the complex properties of procedural learning and open up new experimental questions for synaptic plasticity in the cerebellar network. 2014-10-17T09:45:25Z 2014-10-17T09:45:25Z 2014 journal article Luque, N.R.; et al. Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Frontiers in Computational Neuroscience, 8: 97 (2014). [http://hdl.handle.net/10481/33430] 1662-5188 http://hdl.handle.net/10481/33430 10.3389/fncom.2014.00097 eng info:eu-repo/grantAgreement/EC/FP7/238686 info:eu-repo/grantAgreement/EC/FP7/270434 http://creativecommons.org/licenses/by-nc-nd/3.0/ open access Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License Frontiers Research Foundation