Multinode Shepard functions and tensor product polynomial interpolation: Applications to Digital Elevation Models Barrera Rosillo, Domingo Dell’Accio, Francesco Di Tommaso, Filomena Eddargani, Salah Ibáñez Pérez, María José Larosa, Francesco Nudo, Federico Reinoso Gordo, Juan Francisco Multinode Shepard functions Tensor product interpolation Digital Elevation Model The paper presents an in-depth exploration of the multinode Shepard interpolant on a regular rectangular grid, demonstrating its efficacy in reconstructing surfaces from DEM data. Additionally, we study the approximation order associated to this interpolant and present a detailed algorithm for reconstructing surfaces. Numerical tests showcase the effectiveness of the proposed algorithm. 2025-10-01T10:17:00Z 2025-10-01T10:17:00Z 2026-03-15 journal article Barrera, D., Dell’Accio, F., Di Tommaso, F., Eddargani, S., Ibáñez, M. J., Larosa, F., Nudo, F., & Reinoso, J. F. (2026). Multinode Shepard functions and tensor product polynomial interpolation: Applications to Digital Elevation Models. Journal of Computational and Applied Mathematics, 475(117036), 117036. https://doi.org/10.1016/j.cam.2025.117036 https://hdl.handle.net/10481/106744 10.1016/j.cam.2025.117036 eng http://creativecommons.org/licenses/by/4.0/ open access Atribución 4.0 Internacional Elsevier B.V.