Mixing dynamics at the confluence of two large rivers undergoing weak density variations Ramón Casañas, Cintia Luz Armengol, Joan Dolz, Josep Prats, Jordi Rueda Valdivia, Francisco José Simulations of tracer experiments conducted with a three-dimensional primitive-equation hydrodynamic and transport model are used to understand the processes controlling the rate of mixing between two rivers (Ebro and Segre), with distinct physical and chemical properties, at their confluence, upstream of a meandering reservoir (Ribarroja reservoir). Mixing rates downstream of the confluence are subject to hourly scale oscillations, driven partly by changes in inflow densities and also as a result of turbulent eddies that develop within the shear layer between the confluent rivers and near a dead zone located downstream of the confluence. Even though density contrasts are low—at most O(10−1) kg m−3 difference among sources—and almost negligible from a dynamic point of view—compared with inertial forces—they are important for mixing. Mixing rates between the confluent streams under weakly buoyant conditions can be of up to 40% larger than those occurring under neutrally buoyant conditions. The buoyancy effects on mixing rates are interpreted as the result of changes in the contact area available for mixing (distortion of the mixing layer). For strong density contrasts, though, when the contact area between the streams becomes nearly horizontal, larger density differences between streams will lead to weaker mixing rates, as a result of the stabilizing effect of vertical density gradients. 2025-01-28T08:01:21Z 2025-01-28T08:01:21Z 2014 journal article Ramón, C. L., J. Armengol, J. Dolz, J. Prats, and F. J. Rueda (2014), Mixing dynamics at the confluence of two large rivers undergoing weak density variations, J. Geophys. Res. Oceans, 119, 2386–2402, doi:10.1002/2013JC009488. https://hdl.handle.net/10481/100639 10.1002/2013JC009488 eng open access John Wiley & Sons