• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ingeniería de Computadores, Automática y Robótica
  • DICAR - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ingeniería de Computadores, Automática y Robótica
  • DICAR - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study

[PDF] Artículo principal (905.2Kb)
Identificadores
URI: https://hdl.handle.net/10481/99904
DOI: 10.1109/TNNLS.2014.2345844
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Naveros, Francisco; Luque, Niceto R.; Garrido, Jesús A.; Carrillo, Richard R.; Anguita, Mancia; Ros, Eduardo
Materia
co-processing CPU-GPU
 
EDLUT
 
event-driven execution
 
real time
 
simulation
 
spiking neural network
 
time-driven execution
 
Fecha
2014-08-26
Resumen
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU by using event-driven methods whilst the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) by using time-driven methods. In this work, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) as many other biologically inspired and also artificial neural networks.
Colecciones
  • DICAR - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias