• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Matrix-based formulation of the iterative randomized stimulation and averaging method for recording evoked potentials

[PDF] Manuscript (647.7Ko)
[PDF] Supplementary material 1 (8.446Mo)
[File] Supplementary material 2 (120.6Ko)
Identificadores
URI: https://hdl.handle.net/10481/99870
DOI: 10.1121/1.5139639
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Torre Vega, Ángel De La; Valderrama Valenzuela, Joaquín Tomás; Segura Luna, José Carlos; Álvarez Ruiz, Isaac
Editorial
The Journal of the Acoustical Society of America, AIP Publishing
Date
2019-12
Referencia bibliográfica
de la Torre A, Valderrama JT, Segura JC, Alvarez IM. Matrix-based formulation of the iterative randomized stimulation and averaging method for recording evoked potentials. The Journal of the Acoustical Society of America (2019) 146, 4545-4556. doi: 10.1121/1.5139639.
Patrocinador
EQC2018-004988-P project grant, funded by the Spanish Ministry of Science, Innovation and Universities
Résumé
The iterative randomized stimulation and averaging (IRSA) method was proposed for recording evoked potentials when the individual responses are overlapped. The main inconvenience of IRSA is its computational cost, associated with a large number of iterations required for recovering the evoked potentials and the computation required for each iteration [involving the whole electroencephalogram (EEG)]. This article proposes a matrix-based formulation of IRSA, which is mathematically equivalent and saves computational load (because each iteration involves just a segment with the length of the response, instead of the whole EEG). Additionally, it presents an analysis of convergence that demonstrates that IRSA converges to the least-squares (LS) deconvolution. Based on the convergence analysis, some optimizations for the IRSA algorithm are proposed. Experimental results (configured for obtaining the full-range auditory evoked potentials) show the mathematical equivalence of the different IRSA implementations and the LS-deconvolution and compare the respective computational costs of these implementations under different conditions. The proposed optimizations allow the practical use of IRSA for many clinical and research applications and provide a reduction of the computational cost, very important with respect to the conventional IRSA, and moderate with respect to the LS-deconvolution. MATLAB/Octave implementations of the different methods are provided as supplementary material.
Colecciones
  • DTSTC - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire