Mostrar el registro sencillo del ítem
An extension of S-artinian rings and modules to a hereditary torsion theory setting
dc.contributor.author | Jara Martínez, Pascual | |
dc.date.accessioned | 2025-01-21T09:13:26Z | |
dc.date.available | 2025-01-21T09:13:26Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/10481/99808 | |
dc.description.abstract | For any commutative ring A, we introduce a generalization of S-artinian rings using a hereditary torsion theory σ instead of a multiplicative closed subset 𝑆��⊆𝐴��. It is proved that if A is a totally σ-artinian ring, then σ must be of finite type, and A is totally σ-noetherian. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Communication in Algebra | es_ES |
dc.title | An extension of S-artinian rings and modules to a hereditary torsion theory setting | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | embargoed access | es_ES |
dc.identifier.doi | 10.1080/00927872.2020.1841786 | |
dc.type.hasVersion | AO | es_ES |