On the influence of cell size in physically-based distributed hydrological modelling to assess extreme values in water resource planning
Metadatos
Mostrar el registro completo del ítemFecha
2012-05-21Patrocinador
Andalusian Agency of Water in the projects “Pilot study for the integral management of the Guadalfeo river watershed” and “Implementation of the Guadalfeo model and tools for its transfer”Resumen
This paper studies the influence of changing spatial resolution on the implementation of distributed hydrological modelling for water resource planning in Mediterranean areas. Different cell sizes were used to investigate variations in the basin hydrologic response given by the model WiMMed, developed in Andalusia (Spain), in a selected watershed. The model was calibrated on a monthly basis from the available daily flow data at the reservoir that closes the watershed, for three different cell sizes, 30, 100, and 500 m, and the effects of this change on the hydrological response of the basin were analysed by means of the comparison of
the hydrological variables at different time scales for a 3-yr-period, and the effective values for the calibration parameters
obtained for each spatial resolution. The variation in the distribution of the input parameters due to using different
spatial resolutions resulted in a change in the obtained hydrological networks and significant differences in other
hydrological variables, both in mean basin-scale and values distributed in the cell level. Differences in the magnitude
of annual and global runoff, together with other hydrological components of the water balance, became apparent. This
study demonstrated the importance of choosing the appropriate spatial scale in the implementation of a distributed hydrological
model to reach a balance between the quality of results and the computational cost; thus, 30 and 100-m could be chosen for water resource management, without significant decrease in the accuracy of the simulation, but the 500-m cell size resulted in significant overestimation of runoff and consequently, could involve uncertain decisions based on the expected availability of rainfall excess for storage in the reservoirs. Particular values of the effective calibration parameters are also provided for this hydrological model and the study area.