Mostrar el registro sencillo del ítem

dc.contributor.authorJara Martínez, Pascual 
dc.contributor.authorOmar, Farah
dc.contributor.authorSantos, Evangellina
dc.date.accessioned2025-01-21T08:32:58Z
dc.date.available2025-01-21T08:32:58Z
dc.date.issued2024
dc.identifier.citationBeiträge zur Algebra und Geometrie / Contributions to Algebra and Geometryes_ES
dc.identifier.urihttps://hdl.handle.net/10481/99788
dc.description.abstractSimple modules on a ring have information about a part of the spectrum (the maximal spectrum) and, in some cases, about the whole ring. Therefore, knowledge about the structure and properties of simple modules is of interest. In the case we are interested in: chain conditions on modules relative to a multiplicative set S ⊆ A or a hereditary torsion theoryσ inMod- A,wefindthattwodifferentclassesoftotallysimplemodules appear. Given a multiplicative subset S ⊆ A one tends to introduce S-simple modules either as those non totally S-torsion which are S-minimal, or as those for which 0 ⊆ M is S-maximal. Apparently these two definitions are different. We show that both definitions coincide, and define an A-module M to be S-simple whenever it satisfies: (1) Ann(M) ∩ S = ∅; (2) there exists s ∈ S such that σS(M)s = 0, and (3) Ms ⊆ L, for every no totally S-torsion submodule L ⊆ M. The main goal of this paper is to provide examples of this kind of totally simple modules by delving into their structure. As a byproduct we explore the relationship between these totally simple modules and totally prime modules, and the local behaviour of totally simple modules. We complete the paper by providing examples of this theory.es_ES
dc.language.isoenges_ES
dc.publisherBeiträge zur Algebra und Geometrie / Contributions to Algebra and Geometryes_ES
dc.subjectSimple modulees_ES
dc.subjectS-finite modulees_ES
dc.subjectNoetherian ringes_ES
dc.subjectHereditary torsion theoryes_ES
dc.titleTotally simple moduleses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doi10.1007/s13366-024-00759-6
dc.type.hasVersionAOes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem