Mostrar el registro sencillo del ítem

dc.contributor.authorJara Martínez, Pascual 
dc.contributor.authorRodríguez, Miguel L.
dc.date.accessioned2025-01-21T08:22:36Z
dc.date.available2025-01-21T08:22:36Z
dc.date.issued2020
dc.identifier.citationArhimede Mathematical Journal, 2 (2020)es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99785
dc.description.abstractThis paper deals with the problem of determining all solutions, in positive integers, of the congruence systems X2 ≡1 (mod Y) Y2 ≡1 (mod X) and X2 ≡1 (mod Y) Y2 ≡1 (mod Z) Z2 ≡1 (mod X) For this purpose, we firstly solve the system of equations in two variables. This system and its solutions are well known; the aim of this work is to point out that these solutions have an inner structure in the sense that each solution is uniquely given by consecutive elements of a particular kind of Lucas sequence. Secondly and as for cases of system of equations in three variables, particular families of solutions are shown identifying ways to define triplets (x,y,z) presented as solutions of the system of equations. The inner structure of the set of all solutions of the three-variable quadratic system is also a wide problem to study.es_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectCongruenceses_ES
dc.titleSolving quadratic congruenceses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionAOes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License