• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Matemática Aplicada
  • DMA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Matemática Aplicada
  • DMA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An assessment of numerical and geometrical quality of bases on surface fitting on Powell–Sabin triangulations

[PDF] Repositorio UGR 5.pdf (1.223Mb)
Identificadores
URI: https://hdl.handle.net/10481/99663
DOI: 10.1016/J.MATCOM.2024.04.039
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Fortes Escalona, Miguel Ángel; Raydan, M.; Rodríguez González, Miguel Luis; Sajo-Castelli, A. M.
Editorial
Elsevier
Date
2024-01-12
Referencia bibliográfica
Volume: 223 Pages: 642-653
Abstract
It is well known that the problem of fitting a dataset by means of a spline surface minimizing an energy functional can be carried out by solving a linear system. Such a linear system strongly depends on the underlying functional space and, particularly, on the basis considered. Some papers in the literature study the numerical behavior and processing of the above-mentioned linear systems in particular cases. There is a special kind of ‘good’ basis –those with local support and constituting a partition of unity– having attractive properties when handling geometric problems and that, as a consequence, have been profusely used in the literature of fitting surfaces. In this work, we study the numerical effect of considering these bases in the quadratic Powell-Sabin spline space. Specifically, we present a direct approach to explore different preconditioning strategies and determine to what extent already known ‘good’ bases also have good numerical properties. Additionally, we introduce an inverse approach based on a nonlinear optimization model to identify new bases that exhibit both good geometric and numerical properties.
Collections
  • DMA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback