• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Matemática Aplicada
  • DMA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Matemática Aplicada
  • DMA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

An assessment of numerical and geometrical quality of bases on surface fitting on Powell–Sabin triangulations

[PDF] Repositorio UGR 5.pdf (1.223Mb)
Identificadores
URI: https://hdl.handle.net/10481/99663
DOI: 10.1016/J.MATCOM.2024.04.039
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Fortes Escalona, Miguel Ángel; Raydan, M.; Rodríguez González, Miguel Luis; Sajo-Castelli, A. M.
Editorial
Elsevier
Fecha
2024-01-12
Referencia bibliográfica
Volume: 223 Pages: 642-653
Resumen
It is well known that the problem of fitting a dataset by means of a spline surface minimizing an energy functional can be carried out by solving a linear system. Such a linear system strongly depends on the underlying functional space and, particularly, on the basis considered. Some papers in the literature study the numerical behavior and processing of the above-mentioned linear systems in particular cases. There is a special kind of ‘good’ basis –those with local support and constituting a partition of unity– having attractive properties when handling geometric problems and that, as a consequence, have been profusely used in the literature of fitting surfaces. In this work, we study the numerical effect of considering these bases in the quadratic Powell-Sabin spline space. Specifically, we present a direct approach to explore different preconditioning strategies and determine to what extent already known ‘good’ bases also have good numerical properties. Additionally, we introduce an inverse approach based on a nonlinear optimization model to identify new bases that exhibit both good geometric and numerical properties.
Colecciones
  • DMA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias