Mostrar el registro sencillo del ítem
Optimal knots allocation in the cubic and bicubic spline interpolation problems
dc.contributor.author | Idais, Hassan | |
dc.contributor.author | Yasin, Mohammed | |
dc.contributor.author | Pasadas Fernández, Miguel | |
dc.contributor.author | González Rodelas, Pedro | |
dc.date.accessioned | 2025-01-17T11:22:46Z | |
dc.date.available | 2025-01-17T11:22:46Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://hdl.handle.net/10481/99514 | |
dc.description.abstract | Interpolation, together with approximation, are two major and ubiquitous prob- lems in Mathematics, but also in almost every scienti c eld. Another inter- esting question is the optimal knots placement when interpolating or approxi- mating certain functions using splines. In this work, a powerful methodology is presented for optimal knots placement when interpolating a curve, or a surface, using cubic or bicubic splines, respectively. For this, a Multi-Objective-Genetic Algorithm (MOGA) has been developed, in a way that ensures avoiding the large number of local minima existing in the problem of random knots place- ment. A new technique is presented to optimize both the number of knots and its optimal placement for cubic or bicubic interpolating splines. The perfor- mance of the proposed methodology has been evaluated using functions of one and two variables, respectively. | es_ES |
dc.description.sponsorship | Departamento de Matemática Aplicada de la Universidad de Granada. | es_ES |
dc.description.sponsorship | Grupo de Investigación de la Juntas de Andalucía FQM190-Matemática Aplicada | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Interpolation | es_ES |
dc.subject | knots allocation | es_ES |
dc.subject | Cubic/Bicubic B-splines | es_ES |
dc.title | Optimal knots allocation in the cubic and bicubic spline interpolation problems | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | https://doi.org/10.1016/j.matcom.2018.11.002 | |
dc.type.hasVersion | SMUR | es_ES |