dc.contributor.author | González Rodelas, Pedro | |
dc.contributor.author | Kouibia Krichi, Abdelouahed | |
dc.contributor.author | Mustafa, Basim | |
dc.contributor.author | Pasadas Fernández, Miguel | |
dc.date.accessioned | 2025-01-17T08:53:33Z | |
dc.date.available | 2025-01-17T08:53:33Z | |
dc.date.issued | 2025-04 | |
dc.identifier.uri | https://hdl.handle.net/10481/99487 | |
dc.description.abstract | In this paper we develop an approximation method for numerically solving a linear Volterra
integro-differential problem. The proposed method is based on a functional minimization
problem in a finite-dimensional space generated by a finite Wendland’s type radial basis
functions (RBFs) set. The existence and uniqueness of the solution are established and some
convergence results are proved. Finally we present some numerical examples to show the
effectiveness of this discrete method. | es_ES |
dc.description.sponsorship | Departamento de Matemática Aplicada de la Universidad de Granada
Grupo de investigación FQM191-Matemática Aplicada de la Junta de Andalucía | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Volterra integro-differential equation | es_ES |
dc.subject | Wendland radial basis functions | es_ES |
dc.subject | Variational methods | es_ES |
dc.title | Numerical solution of a linear Volterra integro-differential problem | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | embargoed access | es_ES |
dc.identifier.doi | 10.1016/j.matcom.2024.10.036 | |
dc.type.hasVersion | AM | es_ES |