• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A cost-sensitive Imprecise Credal Decision Tree based on Nonparametric Predictive Inference

[PDF] CS_ICDT.pdf (679.9Kb)
Identificadores
URI: https://hdl.handle.net/10481/99482
DOI: https://doi.org/10.1016/j.asoc.2022.108916
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Moral García, Serafín; Abellán Mulero, Joaquín; Coolen-Maturi, Tahani; Coolen, Frank P. A.
Editorial
Elsevier
Materia
Cost-sensitive classifiers
 
Imprecise Classification
 
Error costs
 
Date
2022-07
Referencia bibliográfica
Moral-García, Serafín, Abellán, Joaquín, Coolen, Frank P. A, Coolen-Maturi, Tahani (2022). A cost-sensitive Imprecise Credal Decision Tree based on Nonparametric Predictive Inference. Applied Soft Computing, Volume 123, 108916. Doi: 10.1016/j.asoc.2022.108916
Sponsorship
GR-FEDER funds under Project A-TIC-344-UGR20; FEDER/Junta de AndalucíaConsejería de Transformación Económica, Industria, Conocimiento y Universidades’’ under Project P20_00159; Research scholarship FPU17/02685
Abstract
Classifiers sometimes return a set of values of the class variable since there is not enough information to point to a single class value. These classifiers are known as imprecise classifiers. Decision Trees for Imprecise Classification were proposed and adapted to consider the error costs when classifying new instances. In this work, we present a new cost-sensitive Decision Tree for Imprecise Classification that considers the error costs by weighting instances, also considering such costs in the tree building process. Our proposed method uses the Nonparametric Predictive Inference Model, a nonparametric model that does not assume previous knowledge about the data, unlike previous imprecise probabilities models. We show that our proposal might give more informative predictions than the existing cost-sensitive Decision Tree for Imprecise Classification. Experimental results reveal that, in Imprecise Classification, our proposed cost-sensitive Decision Tree significantly outperforms the one proposed so far; even though the cost of erroneous classifications is higher with our proposal, it tends to provide more informative predictions.
Collections
  • DCCIA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback