Mostrar el registro sencillo del ítem

dc.contributor.authorUreña Alcázar, Antonio Jesús 
dc.date.accessioned2025-01-17T07:03:32Z
dc.date.available2025-01-17T07:03:32Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/10481/99448
dc.description.abstractThe classical Lagrange–Dirichlet stability theorem states that, for natural mechanical systems, the strict minima of the potential are dynamically stable. Its converse, i.e., the instability of the maxima of the potential, has been proved by several authors including Liapunov (The general problem of stability of motion, 1892), Hagedorn (Arch Ration Mech Anal 42:281–316, 1971) or Taliaferro (Arch Ration Mech Anal 73(2):183–190, 1980), in various degrees of generality. We complement their theorems by presenting an example of a smooth potential on the plane having an isolated maximum and such that the associated dynamical system has a converging sequence of periodic orbits. This implies that the maximum is not unstable in a stronger sense considered by Siegel and Moser.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleTo what extent are unstable the maxima of the potential?es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1007/s10231-020-00941-2
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]
[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional