Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Gil, Diego Jesús 
dc.contributor.authorLuengo Martín, Julián 
dc.contributor.authorGarcía López, Salvador 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2025-01-16T10:54:40Z
dc.date.available2025-01-16T10:54:40Z
dc.date.issued2019-04
dc.identifier.citationGarcía-Gil, D., Luengo, J., García, S., & Herrera, F. (2019). Enabling smart data: noise filtering in big data classification. Information Sciences, 479, 135-152.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99394
dc.description.abstractn any knowledge discovery process the value of extracted knowledge is directly related to the quality of the data used. Big Data problems, generated by massive growth in the scale of data observed in recent years, also follow the same dictate. A common problem affecting data quality is the presence of noise, particularly in classification problems, where label noise refers to the incorrect labeling of training instances, and is known to be a very disruptive feature of data. However, in this Big Data era, the massive growth in the scale of the data poses a challenge to traditional proposals created to tackle noise, as they have difficulties coping with such a large amount of data. New algorithms need to be proposed to treat the noise in Big Data problems, providing high quality and clean data, also known as Smart Data. In this paper, two Big Data preprocessing approaches to remove noisy examples are proposed: an homogeneous ensemble and an heterogeneous ensemble filter, with special emphasis in their scalability and performance traits. The obtained results show that these proposals enable the practitioner to efficiently obtain a Smart Dataset from any Big Data classification problem.es_ES
dc.description.sponsorshipThis work is supported by the Spanish National Research Project TIN2017-89517-P, and the Project BigDaP-TOOLS - Ayu- das Fundación BBVA a Equipos de Investigación Científica 2016.es_ES
dc.language.isoenges_ES
dc.publisherInformation Scienceses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBig Dataes_ES
dc.subjectSmart Dataes_ES
dc.subjectClassification es_ES
dc.subjectClass noisees_ES
dc.subjectLabel noisees_ES
dc.titleEnabling Smart Data: Noise filtering in Big Data classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.ins.2018.12.002
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional