Mostrar el registro sencillo del ítem

dc.contributor.authorTriguero, Isaac
dc.contributor.authorGarcía Gil, Diego Jesús 
dc.contributor.authorMaillo, Jesús
dc.contributor.authorLuengo Martín, Julián 
dc.contributor.authorGarcía López, Salvador 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2025-01-16T10:54:21Z
dc.date.available2025-01-16T10:54:21Z
dc.date.issued2018-11-28
dc.identifier.citationTriguero, I., García‐Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2019). Transforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(2), e1289.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99393
dc.description.abstractThe k-nearest neighbors algorithm is characterized as a simple yet effective data mining technique. The main drawback of this technique appears when massive amounts of data—likely to contain noise and imperfections—are involved, turning this algorithm into an imprecise and especially inefficient technique. These disadvantages have been subject of research for many years, and among others approaches, data preprocessing techniques such as instance reduction or missing values imputation have targeted these weaknesses. As a result, these issues have turned out as strengths and the k-nearest neighbors rule has become a core algorithm to identify and correct imperfect data, removing noisy and redundant samples, or imputing missing values, transforming Big Data into Smart Data—which is data of sufficient quality to expect a good outcome from any data mining algorithm. The role of this smart data gleaning algorithm in a supervised learning context are investigated. This includes a brief overview of Smart Data, current and future trends for the k-nearest neighbor algorithm in the Big Data context, and the existing data preprocessing techniques based on this algorithm. We present the emerging big data-ready versions of these algorithms and develop some new methods to cope with Big Data. We carry out a thorough experimental analysis in a series of big datasets that provide guidelines as to how to use the k-nearest neighbor algorithm to obtain Smart/Quality Data for a high-quality data mining process. Moreover, multiple Spark Packages have been developed including all the Smart Data algorithms analyzed.es_ES
dc.description.sponsorshipThis work is supported by the Spanish National Research Project TIN2017-89517-P and the Foundation BBVA project 75/2016 BigDaP-TOOLS—“Ayudas Fundación BBVA a Equipos de Investigación Científica 2016”. J. Maillo holds a FPU scholarship from the Spanish Ministry of Education.es_ES
dc.language.isoenges_ES
dc.publisherWiley Interdisciplinary Reviews: Data Mining and Knowledge Discoveryes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectbig dataes_ES
dc.subjectdata preprocessinges_ES
dc.subjectinstance reductiones_ES
dc.subjectK nearest neighbourses_ES
dc.subjectimperfect dataes_ES
dc.subjectsmart dataes_ES
dc.subjectinstance reductiones_ES
dc.subjectsparkes_ES
dc.titleTransforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1002/widm.1289
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional