Afficher la notice abrégée

dc.contributor.authorMartín, Diana
dc.contributor.authorMartínez-Ballesteros, María
dc.contributor.authorGarcía Gil, Diego Jesús 
dc.contributor.authorAlcalá Fernández, Jesús 
dc.contributor.authorHerrera Triguero, Francisco 
dc.contributor.authorRiquelme-Santos, José Cristóbal
dc.date.accessioned2025-01-16T10:45:26Z
dc.date.available2025-01-16T10:45:26Z
dc.date.issued2018-08
dc.identifier.citationMartín, D., Martínez-Ballesteros, M., García-Gil, D., Alcalá-Fdez, J., Herrera, F., & Riquelme-Santos, J. C. (2018). MRQAR: A generic MapReduce framework to discover quantitative association rules in big data problems. Knowledge-Based Systems, 153, 176-192.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99384
dc.description.abstractMany algorithms have emerged to address the discovery of quantitative association rules from datasets in the last years. However, this task is becoming a challenge because the processing power of most existing techniques is not enough to handle the large amount of data generated nowadays. These vast amounts of data are known as Big Data. A number of previous studies have been focused on mining boolean or nominal association rules from Big Data problems, nevertheless, the data in real-world applications usually consist of quantitative values and designing data mining algorithms able to extract quantitative association rules presents a challenge to workers in this research field. In spite of the fact that we can find classical methods to discover boolean or nominal association rules in the most well-known repositories of Big Data algorithms, such repositories do not provide methods to discover quantitative association rules. Indeed, no methodologies have been proposed in the literature without prior discretization in Big Data. Hence, this work proposes MRQAR, a new generic parallel framework to discover quantitative association rules in large amounts of data, designed following the MapReduce paradigm using Apache Spark. MRQAR performs an incremental learning able to run any sequential quantitative association rule algorithm in Big Data problems without needing to redesign such algorithms. As a case study, we have integrated the multiobjective evolutionary algorithm MOPNAR into MRQAR to validate the generic MapReduce framework proposed in this work. The results obtained in the experimental study performed on five Big Data problems prove the capability of MRQAR to obtain reduced set of high quality rules in reasonable time.es_ES
dc.description.sponsorshipThis work has been partially funded by the Ministry of Economy and Competitiveness under the TIN2017-89517-P, TIN2014-55894-C2-1-R and TIN2017-88209-C2-2-R projects.es_ES
dc.language.isoenges_ES
dc.publisherKnowledge-Based Systemses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQuantitative association ruleses_ES
dc.subjectMultiobjective evolutionary algorithmses_ES
dc.subjectBig Dataes_ES
dc.subjectMapReducees_ES
dc.subjectSparkes_ES
dc.titleMRQAR: A generic MapReduce framework to discover quantitative association rules in big data problemses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.knosys.2018.04.037
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional