Afficher la notice abrégée

dc.contributor.authorValdivia García, Ana
dc.contributor.authorMartínez Cámara, Eugenio 
dc.contributor.authorLuzón García, María Victoria 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2025-01-16T09:49:03Z
dc.date.available2025-01-16T09:49:03Z
dc.date.issued2019
dc.identifier.citationMiguel López, Ana Valdivia, Eugenio Martínez-Cámara, M. Victoria Luzón, Francisco Herrera, E2SAM: Evolutionary ensemble of sentiment analysis methods for domain adaptation, Information Sciences, Volume 480, 2019, Pages 273-286, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2018.12.038.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99352
dc.description.abstractCurrently, a plethora of industrial and academic sentiment analysis methods for classifying the opinion polarity of a text are available and ready to use. However, each of those methods have their strengths and weaknesses, due mainly to the approach followed in their design (supervised/unsupervised) or the domain of text used in their development. The weaknesses are usually related to the capacity of generalisation of machine learning algorithms, and the lexical coverage of linguistic resources. Those issues are two of the main causes of one of the challenges of Sentiment Analysis, namely the domain adaptation problem. We argue that the right ensemble of a set of heterogeneous Sentiment Analysis Methods will lessen the domain adaptation problem. Thus, we propose a new methodology for optimising the contribution of a set of off-the-shelf Sentiment Analysis Methods in an ensemble classifier depending on the domain of the input text. The results clearly show that our claim holds.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSentiment analysises_ES
dc.subjectEnsembles classifierses_ES
dc.subjectGenetic algorithmses_ES
dc.titleE2SAM: Evolutionary ensemble of sentiment analysis methods for domain adaptationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.ins.2018.12.038
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional