Show simple item record

dc.contributor.authorAlfarano, Gianira
dc.contributor.authorLobillo Borrero, Francisco Javier 
dc.contributor.authorNeri, Alessandro
dc.date.accessioned2025-01-15T11:43:50Z
dc.date.available2025-01-15T11:43:50Z
dc.date.issued2021-01
dc.identifier.urihttps://hdl.handle.net/10481/99242
dc.description.abstractIn this paper, a Roos like bound on the minimum distance for skew cyclic codes over a general field is provided. The result holds in the Hamming metric and in the rank metric. The proofs involve arithmetic properties of skew polynomials and an analysis of the rank of parity-check matrices. For the rank metric case, a way to arithmetically construct codes with a prescribed minimum rank distance, using the skew Roos bound, is also given. Moreover, some examples of MDS codes and MRD codes over finite fields are built, using the skew Roos bound.es_ES
dc.language.isoenges_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCyclic codeses_ES
dc.subjectSkew cyclic codeses_ES
dc.subjectRoos boundes_ES
dc.subjectRank-metric codeses_ES
dc.subjectMRD codeses_ES
dc.titleRoos bound for skew cyclic codes in Hamming and rank metrices_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ffa.2020.101772


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional