• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Myers and Hawking theorems: Geometry for the limits of the Universe

[PDF] mjm.pdf (772.0Ko)
Identificadores
URI: https://hdl.handle.net/10481/99233
DOI: https://doi.org/10.1007/s00032-015-0241-2
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Morales Álvarez, Pablo; Sánchez Caja, Miguel
Date
2015
Referencia bibliográfica
Milan J. Math. 83, 295–311 (2015)
Patrocinador
The first-named author is supported by the grant “Beca de Iniciación a la Investigación, plan propio de 2013” (Vicerrectorado de Política Científica e Investigación, Univ. Granada), and both authors are supported by the research project MTM2013-47828-C2-1-P (Spanish MINECO and FEDER funds). The authors also acknowledge the generous help of B. Arch. Ana Rodríguez with the figures.
Résumé
It is known that the celebrated theorem by Hawking which assures the existence of a Big-Bang under physically motivated hypotheses, uses geometric ideas inspired in classical Myers theorem. Our aim here is to go a step further: first, a result which can be interpreted as the exact analogy in pure Riemannian geometry to Hawking theorem will be proven and, then, the isomorphic role of the hypotheses in both theorems will be analyzed. This will provide some interesting links between Riemannian and Lorentzian geometries, as well as an introduction to the latter. The reader interested only in Riemannian Geometry can regard this new result as a simple application of Myers theorem combined with the properties of focal points. However, readers with broader perspectives will learn that when a geometer thinks in our space as a complete Riemannian manifold, a relativist may think in our spacetime as predictable, or that suitable bounds on the Ricci tensor will force geodesics either to converge in the space or to join in the time. Moreover, the limitation of the distance from any point to a hypersurface in a Riemannian manifold, may turn out into a catastrophic relativistic limit for the duration of our physical Universe.
Colecciones
  • DEIO - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire