Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Basso, Carlos Jesús 
dc.contributor.authorFrancisco Agra, Abel J.
dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2025-01-15T11:04:35Z
dc.date.available2025-01-15T11:04:35Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/10481/99224
dc.description.abstractThe amount of information generated in social media channels or economical/business transactions exceeds the usual bounds of static databases and is in continuous growing. In this work, we propose a frequent itemset mining method using sliding windows capable of extracting tendencies from continuous data flows. For that aim, we develop this method using Big Data technologies, in particular, using the Spark Streaming framework enabling distributing the computation along several clusters and thus improving the algorithm speed. The experimentation carried out shows the capability of our proposal and its scalability when massive amounts of data coming from streams are taken into account.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleFinding tendencies in streaming data using big data frequent itemset mininges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.knosys.2018.09.026
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional