• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

ANCES: A novel method to repair attribute noise in classification problems

[PDF] 2022-PR-Saez.pdf (1.008Mo)
Identificadores
URI: https://hdl.handle.net/10481/99212
DOI: 10.1016/j.patcog.2021.108198
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Article has an altmetric score of 1
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Sáez Muñoz, José Antonio; Corchado, Emilio
Editorial
Elsevier
Materia
attribute noise
 
noise correction
 
noise filtering
 
noisy data
 
classification
 
Date
2022
Referencia bibliográfica
José A. Sáez; Emilio Corchado. ANCES: A novel method to repair attribute noise in classification problems. Pattern Recognition, 121, 108198. 2022. doi: 10.1016/j.patcog.2021.108198
Résumé
Noise negatively affects the complexity and performance of models built in classification problems. The most common approach to mitigate its consequences is the usage of preprocessing techniques, known as noise filters, which are designed to remove noisy samples from the training data. Nevertheless, they are specifically oriented to deal with errors affecting class labels. Their employment may not always result in an improvement when noise affects attribute values. In these cases, correcting the errors is an interesting alternative to traditional noise filtering that has not been enough studied so far in the specialized literature. This research proposes an attribute noise correction method with the final aim of increasing the performance of the classification algorithms used later. The identification of noisy data is based on an error score assigned to each one of the attribute values in the dataset, which are then passed through an optimization process to correct their potential noise. The validity of the proposed method is studied in an exhaustive experimental study, in which it is compared to several well-known preprocessing methods to deal with noisy datasets. The results obtained show the suitability of attribute noise correction with respect to the other alternatives when data suffer from attribute noise.
Colecciones
  • DEIO - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire
 

 

Posted by 1 X users
16 readers on Mendeley
See more details