Mostrar el registro sencillo del ítem

dc.contributor.authorD. Earp, Brian
dc.contributor.authorPorsdam Mann, Sebastian
dc.contributor.authorLiu, Peng
dc.contributor.authorRodríguez Hannikainen, Ivar Allan 
dc.contributor.authorAli Khan, Maryam
dc.contributor.authorChu, Yueying
dc.contributor.authorSavulescu, Julian
dc.date.accessioned2025-01-15T08:06:14Z
dc.date.available2025-01-15T08:06:14Z
dc.date.issued2024-11-25
dc.identifier.citationD. Earp, B. et. al. AnnNYAcad Sci. 2024;1542:51–57. [https://doi.org/10.1111/nyas.15258]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99171
dc.description.abstractGenerative artificial intelligence (AI) raises ethical questions concerning moral and legal responsibility—specifically, the attributions of credit and blame for AI-generated content. For example, if a human invests minimal skill or effort to produce a beneficial output with an AI tool, can the human still take credit? How does the answer change if the AI has been personalized (i.e., fine-tuned) on previous outputs produced without AI assistance by the same human?We conducted a preregistered experiment with representative sampling (N = 1802) repeated in four countries (United States, United Kingdom, China, and Singapore).We investigated laypeople’s attributions of credit and blame to human users for producing beneficial or harmful outputs with a standard large language model (LLM), a personalized LLM, or no AI assistance (control condition). Participants generally attributed more credit to human users of personalized versus standard LLMs for beneficial outputs, whereas LLM type did not significantly affect blame attributions for harmful outputs, with a partial exception among Chinese participants. In addition, UK participants attributed more blame for using any type of LLM versus no LLM. Practical, ethical, and policy implications of these findings are discussed.es_ES
dc.description.sponsorshipWellcome Trust (grant number: WT203132/Z/16/Z)es_ES
dc.description.sponsorshipEuropean Commision (CAVAA; grant number: EIC 101071178; Brian D. Earp, Maryam Ali Khan), the Novo Nordisk Foundation (grant number: NNF23SA0087056; Sebastian Porsdam Mann), the Spanish Ministry of Science, Innovation and Universities (grant numbers: CNS2023-144543, RYC2020-029280-I; Ivar Hannikainen), the National Research Foundation, Singapore (grant number: AISG3- GV-2023-012; Julian Savulescu) and the Wellcome Trust (grant number: 226801; Julian Savulescu)es_ES
dc.description.sponsorshipUniversity of Granada/Consortium of University Libraries of Andalusia (CBUA)es_ES
dc.language.isoenges_ES
dc.publisherWiley Online Libraryes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcredit–blame asymmetryes_ES
dc.subjectgenerative artificial intelligencees_ES
dc.subjectlarge language modeles_ES
dc.titleCredit and blame for AI–generated content: Effects of personalization in four countrieses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1111/nyas.15258
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional