Mostrar el registro sencillo del ítem

dc.contributor.authorGámez Granados, Juan Carlos
dc.contributor.authorGarcía Muñoz, David
dc.contributor.authorGonzález Muñoz, Antonio 
dc.contributor.authorPérez Rodríguez, Francisco G.Raúl 
dc.date.accessioned2025-01-14T13:25:55Z
dc.date.available2025-01-14T13:25:55Z
dc.date.issued2019-05-01
dc.identifier.citationGámez J.C., García D., González A., Pérez R., An approximation to solve regression problems with a genetic fuzzy rule ordinal algorithm (2019) Applied Soft Computing Journal, 78, pp. 13 - 28es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99141
dc.description.abstractRegression problems try estimating a continuous variable from a number of characteristics or predictors. Several proposals have been made for regression models based on the use of fuzzy rules; however, all these proposals make use of rule models in which the irrelevance of the input variables in relation to the variable to be approximated is not taken into account. Regression problems share with the ordinal classification the existence of an explicit relationship of order between the values of the variable to be predicted. In a recent paper, the authors have proposed an ordinal classification algorithm that takes into account the detection of the irrelevance of input variables. This algorithm extracts a set of fuzzy rules from an example set, using as the basic model a sequential covering strategy along with a genetic algorithm. In this paper, a proposal for a regression algorithm based on this ordinal classification algorithm is presented. The proposed model can be interpreted as a multiclassifier and multilevel system that learns at each stage using the knowledge gained in previous stages. Due to similarities between regression and ordinal problems as well as the use of a set of ordinal algorithms, an error interval can be returned with the regression output value. Experimental results show the good behavior of the proposal as well as the results of the error intervales_ES
dc.description.sponsorshipMinisterio de Economía y Competitividad TIN2015-71618-Res_ES
dc.description.sponsorshipFondos FEDER para el Desarrollo Regional Europeoes_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFuzzy Ruleses_ES
dc.subjectGenetic Algorithmes_ES
dc.subjectOrdinal classificationes_ES
dc.subjectRegressiones_ES
dc.titleAn approximation to solve regression problems with a genetic fuzzy rule ordinal algorithmes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.asoc.2019.02.012


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional