Show simple item record

dc.contributor.authorJara, Leonardo
dc.contributor.authorAriza-Valderrama, Rubén
dc.contributor.authorFernández Olivares, Juan 
dc.contributor.authorGonzález Muñoz, Antonio 
dc.contributor.authorPérez Rodríguez, Francisco G.Raúl 
dc.date.accessioned2025-01-14T12:54:33Z
dc.date.available2025-01-14T12:54:33Z
dc.date.issued2022-01-15
dc.identifier.citationJara L., Ariza-Valderrama R., Fernández-Olivares J., González A., Pérez R., Efficient inference models for classification problems with a high number of fuzzy rules, (2022) Applied Soft Computing, 115, art. no. 108164es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99129
dc.description.abstractIn data science there are problems that are not visible until you work with a sufficiently large number of data. This is the case, for example, with the design of the inference engine in fuzzy rule-based classification systems. The most common way to implement the winning rule inference method is to use sequential processing that reviews each of the rules in the rule set, to determine the best one and return the associated class. This implementation produces fast response times when the set of rules is small and is applied to a small set of examples. In this paper we explore new versions to implement this inference method, avoiding analyzing all the rules and focusing the analysis on the neighborhood of rules around the example. We study experimentally the conditions where each of them should be applied. Finally, we propose an implementation that combines all the studied versions offering good accuracy results and a significant reduction in the response timees_ES
dc.description.sponsorshipMinisterio de Economia, Comercio y Empresa [RTI2018-09846-B-I00]es_ES
dc.description.sponsorshipJunta de Andalucía, Proyecto B-TIC-668-UGR 20es_ES
dc.description.sponsorshipFondos FEDER de la Unión Europeaes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectbig dataes_ES
dc.subjectExplainable AIes_ES
dc.subjectFuzzy reasoninges_ES
dc.subjectLinguistic Fuzzy Rule-Based Classification Systemses_ES
dc.subjectInference enginees_ES
dc.subjectSoft Computinges_ES
dc.titleEfficient inference models for classification problems with a high number of fuzzy ruleses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.asoc.2021.108164


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional