Afficher la notice abrégée

dc.contributor.authorCastro Gutiérrez, Jorge 
dc.contributor.authorAlcaraz Segura, Domingo 
dc.contributor.authorL. Baltzer, Jennifer
dc.contributor.authorAmorós, Lot
dc.contributor.authorMorales Rueda, Fernando
dc.contributor.authorTabik, Siham 
dc.date.accessioned2025-01-08T12:15:00Z
dc.date.available2025-01-08T12:15:00Z
dc.date.issued2024-05-02
dc.identifier.citationCastro Gutiérrez, J. et. al. Restoration Ecology Vol. 32, No. 5, e14164. [https://doi.org/10.1111/rec.14164]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98706
dc.description.abstractAerial seeding with drones has great potential in forest restoration but faces enormous challenges to be efficient and scalable. Current protocols use blanket seeding throughout the area to be restored, meaning a high demand for seed since many seeds arrive in sites unsuitable for establishment. High precision seeding directed to safe microsites at submeter scale could reduce seed use per hectare, reducing economic and ecological costs, while increasing establishment success. Here, we propose an alternative, precision approach to make drone seeding more successful and efficient. This requires (1) submeter-scale selection of target microsites for seeding founded in ecological knowledge; (2) high-resolution remote sensing imagery to train artificial intelligence (AI) systems in target microsite recognition; and (3) process automation by transferring target microsite coordinates from the AI system to the drone. This will reduce seed inputs per unit area, seedling establishment failure risks, and drone operation costs.es_ES
dc.description.sponsorshipProjects SmartFoRest (Ref. TED2021-129690B-I00) funded by MCIN/AEI/10.13039/ 501100011033 and project LIFEWATCH-2019-10-UGR-4, co-funded by the Ministry of Science and Innovation and European Union NextGenerationEU/PRTR through the FEDER funds from the Spanish Pluriregional Operational Program 2014–2020es_ES
dc.description.sponsorshipSalvador de Madariaga grant from the Spanish Governmentes_ES
dc.description.sponsorshipCanada Research Chairs programes_ES
dc.description.sponsorshipUniversity of Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherWiley Online Libraryes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectaerial seedinges_ES
dc.subjectforest restorationes_ES
dc.subjectmicrositees_ES
dc.titleAutomated precise seeding with drones and artificial intelligence: a workflowes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1111/rec.14164
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional