Afficher la notice abrégée

dc.contributor.authorAhmadi Golilarz, Hengame
dc.contributor.authorAzadbar, Alireza
dc.contributor.authorAlizadehsani, Roohallah
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2025-01-08T11:07:58Z
dc.date.available2025-01-08T11:07:58Z
dc.date.issued2024-03-14
dc.identifier.citationAhmadi Golilarz, H. et. al. CAAI Trans. Intell. Technol. 2024;9:866–878. [https://doi.org/10.1049/cit2.12307]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98680
dc.description.abstractMyocarditis is a significant public health concern because of its potential to cause heart failure and sudden death. The standard invasive diagnostic method, endomyocardial biopsy, is typically reserved for cases with severe complications, limiting its widespread use. Conversely, non‐invasive cardiac magnetic resonance (CMR) imaging presents a promising alternative for detecting and monitoring myocarditis, because of its high signal contrast that reveals myocardial involvement. To assist medical professionals via artificial intelligence, the authors introduce generative adversarial networks ‐ multi discriminator (GAN‐MD), a deep learning model that uses binary classification to diagnose myocarditis from CMR images. Their approach employs a series of convolutional neural networks (CNNs) that extract and combine feature vectors for accurate diagnosis. The authors suggest a novel technique for improving the classification precision of CNNs. Using generative adversarial networks (GANs) to create synthetic images for data augmentation, the authors address challenges such as mode collapse and unstable training. Incorporating a reconstruction loss into the GAN loss function requires the generator to produce images reflecting the discriminator features, thus enhancing the generated images' quality to more accurately replicate authentic data patterns. Moreover, combining this loss function with other regularisation methods, such as gradient penalty, has proven to further improve the performance of diverse GAN models. A significant challenge in myocarditis diagnosis is the imbalance of classification, where one class dominates over the other. To mitigate this, the authors introduce a focal loss‐based training method that effectively trains the model on the minority class samples. The GAN‐MD approach, evaluated on the Z‐Alizadeh Sani myocarditis dataset, achieves superior results (F‐measure 86.2%; geometric mean 91.0%) compared with other deep learning models and traditional machine learning methods.es_ES
dc.language.isoenges_ES
dc.publisherWiley Online Libraryes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject2‐Des_ES
dc.subject3‐Des_ES
dc.titleGAN‐MD: A myocarditis detection using multi‐channel convolutional neural networks and generative adversarial network‐based data augmentationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1049/cit2.12307
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional