Mostrar el registro sencillo del ítem

dc.contributor.authorEl Kaoutit Zerri, Laiachi 
dc.contributor.authorSpinosa, Leonardo
dc.date.accessioned2025-01-08T08:06:06Z
dc.date.available2025-01-08T08:06:06Z
dc.date.issued2023
dc.identifier.issn1220-3874
dc.identifier.urihttps://hdl.handle.net/10481/98617
dc.description.abstractWe explore the concept of conjugation between subgroupoids, providing several characteriza- tions of the conjugacy relation (Theorem A in §1.2). We show that two finite groupoid-sets, over a locally strongly finite groupoid, are isomorphic, if and only if, they have the same number of fixed points with respect to any subgroupoid with a single object (Theorem B in §1.2). Lastly, we examine the ghost map of a finite groupoid and the idempotents elements of its Burnside algebra. The exposition includes an Appendix where we gather the main general technical notions that are needed along the paper.es_ES
dc.language.isoenges_ES
dc.publisherBULLETIN MATHÉMATIQUE de la Société des Sciences Mathématiques de Roumanie (Bull. Math. Soc. Sci. Math. Roumanie)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleOn Burnside Theory for groupoidses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional