Mostrar el registro sencillo del ítem
On Burnside Theory for groupoids
dc.contributor.author | El Kaoutit Zerri, Laiachi | |
dc.contributor.author | Spinosa, Leonardo | |
dc.date.accessioned | 2025-01-08T08:06:06Z | |
dc.date.available | 2025-01-08T08:06:06Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 1220-3874 | |
dc.identifier.uri | https://hdl.handle.net/10481/98617 | |
dc.description.abstract | We explore the concept of conjugation between subgroupoids, providing several characteriza- tions of the conjugacy relation (Theorem A in §1.2). We show that two finite groupoid-sets, over a locally strongly finite groupoid, are isomorphic, if and only if, they have the same number of fixed points with respect to any subgroupoid with a single object (Theorem B in §1.2). Lastly, we examine the ghost map of a finite groupoid and the idempotents elements of its Burnside algebra. The exposition includes an Appendix where we gather the main general technical notions that are needed along the paper. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | BULLETIN MATHÉMATIQUE de la Société des Sciences Mathématiques de Roumanie (Bull. Math. Soc. Sci. Math. Roumanie) | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | On Burnside Theory for groupoids | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |