Mostrar el registro sencillo del ítem

dc.contributor.authorEl Kaoutit Zerri, Laiachi 
dc.contributor.authorSaracco, Paolo
dc.date.accessioned2025-01-08T07:30:44Z
dc.date.available2025-01-08T07:30:44Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/10481/98607
dc.description.abstractA differentially recursive sequence over a differential field is a sequence of elements satisfying a homogeneous differential equation with non-constant coeffi- cients (namely, Taylor expansions of elements of the field) in the differential algebra of Hurwitz series. The main aim of this paper is to explore the space of all differ- entially recursive sequences over a given field with a non-zero differential. We show that these sequences form a two-sided vector space that admits, in a canonical way, a structure of Hopf algebroid over the subfield of constant elements. We prove that it is the direct limit, as a left comodule, of all spaces of formal solutions of linear differential equations and that it satisfies, as Hopf algebroid, an additional universal property. When the differential on the base field is zero, we recover the Hopf algebra structure of linearly recursive sequences.es_ES
dc.language.isoenges_ES
dc.publisherQuaestiones Mathematicae, Taylor & Francises_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleThe Hopf algebroid structure of differentially recursive sequenceses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.2989/16073606.2021.1885520


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional